Abstract

A comparative analysis of the IR and Raman spectra of aminoglutethimide (AG) dissolved in CCl4, CHCl3 and CH3CN was performed. Most of the absorption bands were assigned to characteristic group vibrations with the use of the IR and Raman spectra of deuterated AG, glutethimide, N-methyl glutethimide and glutarimide. The AG samples very weakly interacting with the environment were studied with the use of the Ar matrix isolation IR spectra. For comparison, the IR and Raman spectra of the crystalline samples formed by hydrogen-bonded AG molecules were recorded. The spectra were analyzed also in terms of normal modes and the harmonic approximation with the use of the ab initio restricted Hartree-Fock theory. It was found that increasing the solute concentration in CCl4 and CHCl3 leads to formation of the autoassociates. In CH3CN the solute–solvent AG–CH3CN dimers occur. Possible structures of the associates were theoretically studied on the model systems: the centrosymmetric glutarimide dimer and the linear AG–CH3CN dimer. By a comparison of the theoretical and experimental spectra we were able to identify several peaks originating from the solute–solvent interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call