Abstract

The cis<-->trans isomerization reaction has been carried out for 2-naphthol and its hydrogen (H) bonded clusters by infrared (IR) laser in the electronic excited state (S1) in supersonic jets. A specific isomer in the jet was pumped to the X-H stretching vibration in the S1 state, where X refers to C, O, or N atom, by using a stepwise UV-IR excitation, and the dispersed emission spectra of the excited species or generated fragments were observed. It was found that the isomerization occurs only in the H-bonded clusters but a bare molecule does not exhibit the isomerization in the examined energy region of Ev< or =3610 cm(-1), indicating a reduction of the isomerization barrier height upon the H bonding. The relative yield of the isomerization was observed as a function of internal energy. The isomerization yield was found to be very high at the low IR frequency excitation, and was rapidly reduced with the IR frequency due to the competition of the dissociation of the H bond within the isomer. Density-functional theory (DFT) and time-dependent DFT calculations were performed for estimating the barrier height of the isomerization for bare 2-naphthol and its cluster for electronic ground and excited states. The calculation showed that the isomerization barrier height is highly dependent on the electronic states. However, the reduction of the height upon the hydrogen bonding was not suggested at the level of our calculation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.