Abstract

Structure, stability, and electronic properties of the bimetallic {[IrI(terpy)(Me)]-[BiIIINNN]}n monomeric, oligomeric, and polymeric structures (n = 1-3 and ∞; terpy = terpyridine; Me = methyl; BiNNN = bismuth triamide) and their derivatives (designated as (Bi·Ir)n structures) were studied theoretically by DFT cluster and periodic calculations. Stable Bi·Ir adducts (monomers) were formed with short Bi-Ir bonds (<2.7 Å) and Gibbs free binding energies larger than 20 kcal/mol for all systems. The substitution of the pincer ligands of Ir(I) and Bi(III) complexes by the electron-donating (NH2) and electron-withdrawing (NO2, F, CF3) groups, respectively, enhanced the Ir → Bi charge transfer, substantially stabilizing the Bi·Ir monomers. The monomers from the unsubstituted complexes can be considered as dispersion stabilized adducts, and they may form spontaneously (Bi·Ir)n layered oligomers/polymers with semiconducting properties. The self-assembly of monomers into oligomers/polymers is hindered by bulkier protecting groups on the Bi(III) complex, such as tBu and SiMe3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.