Abstract

Changes in vibrational spectra are among the most important manifestations of the interaction between transition metal dichalcogenides and nucleic acid bases (NAB). Infrared and Raman spectra were calculated using the DFT/M06-2X method for the most stable stacked and covalently bonded complexes of pyrimidine bases with MoS2. Obtained spectra were analyzed to determine the spectral markers of the interactions between the pyrimidine bases and MoS2. We found that interaction with MoS2 leads to significant changes in both frequencies and intensities of NAB vibrations. The correlation between the changes and interaction energies of the NAB molecules with MoS2 was demonstrated. In general, changes in the vibrational frequencies in complexes with covalent bonds are significantly greater than ones in stacked ones. For the bonded complexes, the most significant changes are observed for those fragments of the NAB molecules that are directly involved in the formation of the covalent bonds. Calculations predict the decrease of the IR intensity and Raman activities of the NAB molecules in the spectra of stacked complexes and their increase in the spectra of covalently bonded complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call