Abstract

Key information about the progenitor system and the explosion mechanism of Type Ia supernovae (SNe~Ia) can be obtained from early observations, within a few days from explosion. iPTF16abc was discovered as a young SN~Ia with excellent early time data. Here, we present photometry and spectroscopy of the SN in the nebular phase. A comparison of the early time data with a sample of SNe~Ia shows distinct features, differing from normal SNe~Ia at early phases but similar to normal SNe~Ia at a few weeks after maximum light (i.e. the transitional phase) and well into the nebular phase. The transparency timescales ($t_0$) for this sample of SNe~Ia range between $\sim$ 25 and 41 days indicating a diversity in the ejecta masses. $t_0$ also weakly correlates with the peak bolometric luminosity, consistent with the interpretation that SNe with higher ejecta masses would produce more $^{56}$Ni. Comparing the $t_0$ and the maximum luminosity, L$_{max}$\, distribution of a sample of SNe~Ia to predictions from a wide range of explosion models we find an indication that the sub-Chandrasekhar mass models span the range of observed values. However, the bright end of the distribution can be better explained by Chandrasekhar mass delayed detonation models, hinting at multiple progenitor channels to explain the observed bolometric properties of SNe~Ia. iPTF16abc appears to be consistent with the predictions from the M$_{ch}$ models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call