Abstract

Alzheimer’s disease (AD) is a progressive, degenerative disorder that mainly results in memory loss and a cognitive disorder. Although the cause of AD is still unknown, a minor percentage of AD cases are produced by genetic mutations in the presenilin-1 (PSEN1) gene. Differentiated neuronal cells derived from induced pluripotent stem cells (iPSCs) of patients can recapitulate key pathological features of AD in vitro; however, iPSCs studies focused on the p.E280 A mutation, which afflicts the largest family in the world with familial AD, have not been carried out yet. Although a link between the loss of the Y (LOY) chromosome in peripheral blood cells and risk for AD has been reported, LOY-associated phenotype has not been previously studied in PSEN1 E280 A carriers. Here, we report the reprogramming of fibroblast cells into iPSCs from a familial AD patient with the PSEN1 E280 A mutation, followed by neuronal differentiation into neural precursor cells (NPCs), and the differentiation of NPCs into differentiated neurons that lacked a Y chromosome. Although the PSEN1 E280 A iPSCs and NPCs were successfully obtained, after 8 days of differentiation, PSEN1 E280 A differentiated neurons massively died reflected by release and/ or activation of death markers, and failed to reach complete neural differentiation compared to PSEN 1 wild type cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call