Abstract
Perimenopause is a natural transition to menopause, when hormone disturbance can result in both short-term mental disorders, such as anxiety, and long-term neuroinflammation due to blood-brain barrier (BBB) impairment, which may lead to more serious neurological disorders later on, such as dementia. Effective treatments may prevent both short-term and long-term neurological sequela, which formed the aim of this study. In aged female C57BL/6 mice (16-18 months of age), mesenchymal stromal cells (MSCs) differentiated from human-induced pluripotent stem cells (iPSCs), were administered via tail vein injection. Mice showed increased blood estrogen levels, alleviated anxiety and neuroinflammation, and improved BBB integrity. Interestingly, transplanted MSCs were located close to ovarian sympathetic nerves and decreased ovarian norepinephrine levels, which in turn increased ovarian estrogen secretion. Moreover, the administration of anastrozole, an inhibitor of estrogen synthesis, diminished the therapeutic effects of MSCs in vivo, suggesting the effect to be estrogen-dependent. In vitro study confirmed the impact of MSCs on sympathetic nerves via mitochondria exchange. In conclusion, iPSC-derived MSCs may provide a novel option to manage perimenopause-related hormonal dysregulation and neurological disorders during the female aging process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Biochemistry & Cell Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.