Abstract

SUMMARYRecent advances in induced pluripotent stem cell (iPSC) technology and directed differentiation of iPSCs into cardiomyocytes (iPSC-CMs) make it possible to model genetic heart disease in vitro. We apply CRISPR/Cas9 genome editing technology to introduce three RBM20 mutations in iPSCs and differentiate them into iPSC-CMs to establish an in vitro model of RBM20 mutant dilated cardiomyopathy (DCM). In iPSC-CMs harboring a known causal RBM20 variant, the splicing of RBM20 target genes, calcium handling, and contractility are impaired consistent with the disease manifestation in patients. A variant (Pro633Leu) identified by exome sequencing of patient genomes displays the same disease phenotypes, thus establishing this variant as disease causing. We find that all-trans retinoic acid upregulates RBM20 expression and reverts the splicing, calcium handling, and contractility defects in iPSC-CMs with different causal RBM20 mutations. These results suggest that pharmacological upregulation of RBM20 expression is a promising therapeutic strategy for DCM patients with a heterozygous mutation in RBM20.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.