Abstract

Functionally rejuvenated human papilloma virus-specific cytotoxic T lymphocytes (HPV-rejTs) generated from induced pluripotent stem cells robustly suppress cervical cancer. However, autologous rejT generation is time consuming, leading to difficulty in treating patients with advanced cancer. Although use of allogeneic HPV-rejTs can obviate this, the major obstacle is rejection by the patient immune system. To overcome this, we develop HLA-A24&-E dual integrated HPV-rejTs after erasing HLA class I antigens. These rejTs effectively suppress recipient immune rejection while maintaining more robust cytotoxicity than original cytotoxic T lymphocytes. Single-cell RNA sequencing performed to gain deeper insights reveal that HPV-rejTs are highly enriched with tissue resident memory Tcells, which enhance cytotoxicity against cervical cancer through TGFβR signaling, with increased CD103 expression. Genes associated with the immunological synapse also are upregulated, suggesting that these features promote stronger activation of Tcell receptor (TCR) and increased TCR-mediated target cell death. We believe that our work will contribute to feasible "off-the-shelf" Tcell therapy with robust anti-cervical cancer effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call