Abstract

Glycation is chemical reaction by which sugar molecule bonds with a protein without the help of enzymes. This is often cause to many diseases and therefore the knowledge about glycation is very important. In this paper, we present iProtGly-SS, a protein lysine glycation site identification method based on features extracted from sequence and secondary structural information. In the experiments, we found the best feature groups combination: Amino Acid Composition, Secondary Structure Motifs, and Polarity. We used support vector machine classifier to train our model and used an optimal set of features using a group based forward feature selection technique. On standard benchmark datasets, our method is able to significantly outperform existing methods for glycation prediction. A web server for iProtGly-SS is implemented and publicly available to use: http://brl.uiu.ac.bd/iprotgly-ss/.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.