Abstract

Background and objectiveThe promoter is a fragment of DNA and a specific sequence with transcriptional regulation function in DNA. Promoters are located upstream at the transcription start site, which is used to initiate downstream gene expression. So far, promoter identification is mainly achieved by biological methods, which often require more effort. It has become a more effective classification and prediction method to identify promoter types through computational methods. MethodsIn this study, we proposed a new capsule network and recurrent neural network hybrid model to identify promoters and predict their strength. Firstly, we used one-hot to encode DNA sequence. Secondly, we used three one-dimensional convolutional layers, a one-dimensional convolutional capsule layer and digit capsule layer to learn local features. Thirdly, a bidirectional long short-time memory was utilized to extract global features. Finally, we adopted the self-attention mechanism to improve the contribution of relatively important features, which further enhances the performance of the model. ResultsOur model attains a cross-validation accuracy of 86% and 73.46% in prokaryotic promoter recognition and their strength prediction, which showcases a better performance compared with the existing approaches in both the first layer promoter identification and the second layer promoter's strength prediction. Conclusionsour model not only combines convolutional neural network and capsule layer but also uses a self-attention mechanism to better capture hidden information features from the perspective of sequence. Thus, we hope that our model can be widely applied to other components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call