Abstract

Tuberculosis is a major challenge to global public health. However, the Bacille Calmette‑Guérin (BCG), the only vaccine available against tuberculosis, has been questioned for the low protective effect. The present study used the mouse gene intracellular pathogen resistance I (Ipr1) gene to alter the current BCG vaccine and evaluated its immunity effect against tuberculosis. This study also investigated the intrinsic relationships of Ipr1 and innate immunity. The reformed BCG (BCGi) carrying the Ipr1 gene was constructed. The mice were intranasally challenged with the M.tuberculosis H37Rv strain after vaccination with BCGi. Protection efficacy of the vaccine was assessed by the organ coefficient, bacterial load and pathological changes in the lung. The differential expression of 113immune‑related genes between BCGi and BCG groups were detected by an oligo microarray. According to the results of organ coefficient, bacterial load and pathological changes in the organization, BCGi had been shown to have stronger protective effects against M.tuberculosis than BCG. The oligo microarray and reverse transcription‑quantitative polymerase chain reaction further revealed that the Ipr1 gene could upregulate the expression of 13 genes, including a >3‑fold increase in Toll‑like receptor (TLR)4 and 10‑fold increase in surfactant proteinD (sftpd). The two genes not only participate in innate immunity against pathogens, but also are closely interrelated. Ipr1 could activate the TLR4 and sftpd signaling pathway and improve the innate immunity against tuberculosis, therefore Ipr1 modified BCG may be a candidate vaccine against M.tuberculosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call