Abstract

The preparation of S-scheme heterojunctions has attracted considerable attention in the academic community as a highly effective approach to enhance the separation and migration of electrons and holes, thereby significantly improving the catalytic efficiency of photocatalysts. In this work, a novel S-scheme ipolymer heterojunction photocatalyst, Cd3(C3N3S3)2/Zn3(C3N3S3)2 (CdTMT/ZnTMT), which synergy with π-conjugate system, was synthesized using an innovative in-situ hydrothermal method. Through a series of rigorous characterization tests, the formation of an S-scheme heterojunction between CdTMT and ZnTMT was confirmed. Particular emphasis is placed on the effective enhancement of photocatalytic activity of photocatalysts through π-conjugated orbitals and built-in electric field after combining double-organic conjugated polymer-shaped ZnTMT and CdTMT. Performance tests that show the photocatalytic hydrogen evolution performance of the composite was significantly boosted to an impressive 45.24 mmol∙g−1∙h−1, which is 215.43 times that of single catalyst ZnTMT and 1.76 times that of CdTMT. Finally, this paper discusses the possibility and development prospect of double polymer to construct S-scheme heterojunctions to improve the activity of photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.