Abstract

ABSTRACTThis paper proposes a discrete switching predator-prey model with a mate-finding Allee effect, where also switches are guided by Allee effect. One of the strategies analysed is to use a chemical in order to prevent the pest outbreak when the pest population is free of Allee effect. In this paper, we first study analytically the dynamic behaviors of the two subsystems and the equilibria and their stability of the switched system. Then we provide numerical bifurcation analyses for the switched discrete system. These show that the switched discrete system may have very complex dynamics by 2-parameter bifurcation diagrams which divide the space into regions and study equilibria, and 1-dimensional bifurcation diagrams which reveal that the system has periodic, chaotic solutions, period doubling bifurcations and so on. Furthermore, we try to refer the key parameters and initial densities of both populations associated with pest outbreaks and study their biological implications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.