Abstract

EPRG research aimed at establishing a limit on the toughness value that separates toughness-dependent from toughness-independent failure behavior. More specifically, one objective is to evaluate the toughness-dependent Battelle formula for burst resistance of gouges for (very) low toughness values. This mainly experimental project checks this behavior on several gas transmission pipes, a small diameter one, 150 mm, a medium diameter one, 350 mm, and a large diameter one, 900 mm. Pipe material is carefully characterized in terms of tensile properties, Charpy energy, and shear area. Then, based on the toughness independent criterion, a set of gouges is defined, of different depths/lengths, so as to span the different regions of the criterion, covering both short and long defects. These defects are manufactured by spark erosion, resulting in thin slits. Each such slit is incorporated into a vessel that is submitted to a burst test, with a number of additional measurements, like strain gauges on the pipe surface, a clip gauge et the center of the defect. For the small and medium sized pipes, temperature is also controlled during the test, to ensure it is as low as practically feasible, without heavy infrastructure. The results are interpreted both in terms of comparison with the criteria, and also in terms of analysis of the failure surface, to identify failure mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call