Abstract
Inositol 1,4,5-trisphosphate receptors (IP3 Rs) are intracellular Ca2+ -release channels with crucial roles in cell function. Current IP3 R inhibitors suffer from off-target effects and poor selectivity towards the three distinct IP3 R subtypes. We developed a novel peptide inhibitor of IP3 Rs and determined its effect on connexin-43 (Cx43) hemichannels, which are co-activated by IP3 R stimulation. IP3RPEP6 was developed by in silico molecular docking studies and characterized by on-nucleus patch-clamp experiments of IP3 R2 channels and carbachol-induced IP3 -mediated Ca2+ responses in IP3 R1, 2 or 3 expressing cells, triple IP3 R KO cells and astrocytes. Cx43 hemichannels were studied by patch-clamp and ATP-release approaches, and by inhibition with Gap19 peptide. IP3RPEP6 interactions with IP3 Rs were verified by co-immunoprecipitation and affinity pull-down assays. IP3RPEP6 concentration-dependently reduced the open probability of IP3 R2 channels and competitively inhibited IP3 Rs in an IC50 order of IP3 R2 (~3.9 μM) < IP3 R3 (~4.3 μM) < IP3 R1 (~9.0 μM), without affecting Cx43 hemichannels or ryanodine receptors. IP3RPEP6 co-immunoprecipitated with IP3 R2 but not with IP3 R1; interaction with IP3 R3 varied between cell types. The IC50 of IP3RPEP6 inhibition of carbachol-induced Ca2+ responses decreased with increasing cellular Cx43 expression. Moreover, Gap19-inhibition of Cx43 hemichannels significantly reduced the amplitude of the IP3 -Ca2+ responses and strongly increased the EC50 of these responses. Finally, we identified palmitoyl-8G-IP3RPEP6 as a membrane-permeable IP3RPEP6 version allowing extracellular application of the IP3 R-inhibiting peptide. IP3RPEP6 inhibits IP3 R2/R3 at concentrations that have limited effects on IP3 R1. IP3 R activation triggers hemichannel opening, which strongly affects the amplitude and concentration-dependence of IP3 -triggered Ca2+ responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.