Abstract

A variety of substances with different chemical structures elicits a bitter taste. Several different transduction mechanisms underlie detection of bitter tastants; however, these have been described in detail for only a few compounds. In addition, most studies have focused on mammalian taste cells, of which only a small subset is responsive to any particular bitter compound. In contrast, approximately 80% of the taste cells in the mudpuppy, Necturus maculosus, are bitter-responsive. In this study, we used Ca(2+) imaging and giga-seal whole cell recording to compare the transduction of dextromethorphan (DEX), a bitter antitussive, with transduction of the well-studied bitter compound denatonium. Bath perfusion of DEX (2.5 mM) increased the intracellular Ca(2+) level in most taste cells. The DEX-induced Ca(2+) increase was inhibited by thapsigargin, an inhibitor of Ca(2+) transport into intracellular stores, but not by U73122, an inhibitor of phospholipase C, or by ryanodine, an inhibitor of ryanodine-sensitive Ca(2+) stores. Increasing intracellular cAMP levels with a cell-permeant cAMP analogue and a phosphodiesterase inhibitor enhanced the DEX-induced Ca(2+) increase, which was inhibited partially by H89, a protein kinase A inhibitor. Electrophysiological measurements showed that DEX depolarized the membrane potential and inhibited voltage-gated Na(+) and K(+) currents in the presence of GDP-beta-S, a blocker of G-protein activation. DEX also inhibited voltage-gated Ca(2+) channels. We suggest that DEX, like quinine, depolarizes taste cells by block of voltage-gated K channels, which are localized to the apical membrane in mudpuppy. In addition, DEX causes release of Ca(2+) from intracellular stores by a phospholipase C-independent mechanism. We speculate that the membrane-permeant DEX may enter taste cells and interact directly with Ca(2+) stores. Comparing transduction of DEX with that of denatonium, both compounds release Ca(2+) from intracellular stores. However, denatonium requires activation of phospholipase C, and the mechanism results in a hyperpolarization rather than a depolarization of the membrane potential. These data support the hypothesis that single taste receptor cells can use multiple mechanisms for transducing the same bitter compound.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call