Abstract

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are widely expressed intracellular channels that release Ca2+ from the endoplasmic reticulum (ER). We review how studies of IP3Rs removed from their intracellular environment ('ex cellula'), alongside similar analyses of ryanodine receptors, have contributed to understanding IP3R behaviour. Analyses of permeabilized cells have demonstrated that the ER is the major intracellular Ca2+ store, and that IP3 stimulates Ca2+ release from this store. Radioligand binding confirmed that the 4,5-phosphates of IP3 are essential for activating IP3Rs, and facilitated IP3R purification and cloning, which paved the way for structural analyses. Reconstitution of IP3Rs into lipid bilayers and patch-clamp recording from the nuclear envelope have established that IP3Rs have a large conductance and select weakly between Ca2+ and other cations. Structural analyses are now revealing how IP3 binding to the N-terminus of the tetrameric IP3R opens the pore ∼7 nm away from the IP3-binding core (IBC). Communication between the IBC and pore passes through a nexus of interleaved domains contributed by structures associated with the pore and cytosolic domains, which together contribute to a Ca2+-binding site. These structural analyses provide evidence to support the suggestion that IP3 gates IP3Rs by first stimulating Ca2+ binding, which leads to pore opening and Ca2+ release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.