Abstract

Abstract Tight regulation of HSC homeostasis ensures life-long hematopoiesis and prevents blood cancers. The mechanisms balancing HSC quiescence with expansion and differentiation into hematopoietic progenitors are incompletely understood. Here, we identify inositoltrisphosphate (IP3) 3-kinase B (Itpkb) as a novel essential regulator of HSC quiescence and function. Young Itpkb-/- mice accumulated phenotypic HSC which were less quiescent and proliferated more than wildtype controls. Itpkb-/- HSC downregulated quiescence associated mRNAs, but upregulated activation, oxidative metabolism, protein synthesis and lineage associated transcripts. Although they showed no significant homing defects and had normal to elevated viability, Itpkb-/- HSC had a severely reduced competitive long-term repopulating potential. Aging Itpkb-/- mice lost hematopoietic stem and progenitor cells and died with severe anemia. Wildtype HSC normally repopulated Itpkb-/- hosts, indicating a HSC-intrinsic Itpkb requirement. In vitro, Itpkb-/- HSC had reduced cobblestone-area forming cell activity and showed increased stem cell factor activation of the phosphoinositide 3-kinase (PI3K) effector Akt. This was reversed by exogenous provision of the Itpkb product IP4, a known PI3K/Akt antagonist. Itpkb-/- HSC also showed transcriptome changes consistent with hyperactive Akt/mTOR signaling. Thus, we propose that Itpkb ensures HSC quiescence and function in part by limiting cytokine-induced PI3K signaling in HSC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.