Abstract

We describe a novel restoration strategy called virtual protection cycles (p-cycles, patents pending) for extremely fast restoration in IP networks. Originally conceived for use in WDM and Sonet transport networks, we outline the adaption of the p-cycle concept to an IP environment. In an IP router-based network, p-cycles are implemented with virtual circuits techniques (such as an MPLS label switched path, or other means) to form closed logical loops that protect a number of IP links, or a node. In the event of failure, packets which would normally have been lost are encapsulated with a p-cycle IP address and reenter the routing table, which diverts them onto a protection cycle. They travel by normal forwarding or label switching along the p-cycle until they reach a node where the continuing route cost to the original destination is lower than that at the p-cycle entry node. Diverted packets are deencapsulated (dropped from the p-cycle) at that node and follow a normal (existing) route from there to their destination. Conventional routing protocols such as OSPF remain in place and operate as they do today, to develop a longer term global update to routing tables. Diversionary flows on the p-cycle inherently cease when the global routing update takes effect in response to the failed link or node. The p-cycle thus provides an immediate real-time detour, preventing packet loss, until conventional global routing reconvergence occurs. The aim of the paper is to explain the basic p-cycle concept and its adaptation to both link and node restoration in the IP transport layer, and to outline certain initial results on the problem of optimized design of p-cycle based IP networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call