Abstract

A weighting strategy for handling outliers in binary classification using support vector machine (SVM) is proposed in this article. The traditional SVM model is modified by introducing an induced ordered weighted averaging (IOWA) operator, in which the hinge loss function becomes an ordered weighted sum of the SVM slack variables. These weights are defined using IOWA quantifiers, while the order is induced via fuzzy density-based methods for outlier detection. The proposal is developed for both linear and kernel-based classification using the duality theory and the kernel trick. Our experimental results on well known benchmark datasets demonstrate the virtues of the proposed IOWA-SVM, which achieved the best average performance compared to other machine learning approaches of similar complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.