Abstract
IoT devices can be used to complete a wide array of physical tasks, but due to factors such as low computational resources and distributed physical deployment, they are susceptible to a wide array of faulty behaviors. Many devices deployed in homes, vehicles, industrial sites, and hospitals carry a great risk of damage to property, harm to a person, or breach of security if they behave faultily. We propose a general fault handling system named IoTRepair, which shows promising results for effectiveness with limited latency and power overhead in an IoT environment. IoTRepair dynamically organizes and customizes fault-handling techniques to address the unique problems associated with heterogeneous IoT deployments. We evaluate IoTRepair by creating a physical implementation mirroring a typical home environment to motivate the effectiveness of this system. Our evaluation showed that each of our fault-handling functions could be completed within 100 milliseconds after fault identification, which is a fraction of the time that state-of-the-art fault-identification methods take (measured in minutes). The power overhead is equally small, with the computation and device action consuming less than 30 milliwatts. This evaluation shows that IoTRepair not only can be deployed in a physical system, but offers significant benefits at a low overhead.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.