Abstract
The massive increase in the Internet of Things (IoT) has brought a diverse long-range, low-power, and low bit-rate wireless network technologies. The LoRa a low-power wide area network (LPWAN) gained popularity as radio technology for the realization of many IoT applications. LoRa is typically employed together with LoRaWAN MAC protocol and operates in the license-free ISM bands. LoRa networks have an issue with scalability when the number of end nodes connected to one network is larger than the shared number of channels, that causes a collision and packets loss through receiving a wide range of different message sizes from various application. In this paper, we describe an accurate and efficient way confirmed by simulation to calculate the probability of collision rate and packet loss in LPWANs under various circumstances. Moreover, based on the LoRaWAN specification, we consider a dense network deployment of IoT devices. In the event of collisions, our proposed algorithms is classified to two approaches. Firstly a time scheduling algorithm is proposed for LoRaWAN networks that consist of devices supporting LoRaWAN class C mode for synchronization in the beginning between the gateway and the end nodes. Afterwards these devices switch to class A to significantly decrease the collision and to enhance scalability by assigning a Guard Time to each end node. Gateway acknowledgment (ACK) messages to the end nodes are used through class C. Secondly, we also propose a distance spreading factor algorithm according to the distance of the end nodes from the gateway to reduce the probability of collision. Furthermore, many of these devices are battery powered, therefore low power consumption is required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.