Abstract
When resolving many-objective problems, multi-objective optimization algorithms encounter several difficulties degrading their performances. These difficulties may concern the exponential execution time, the effectiveness of the mutation and recombination operators or finding the tradeoff between diversity and convergence. In this paper, the issue of 3D redeploying in indoor the connected objects (or nodes) in the Internet of Things collection networks (formerly known as wireless sensor nodes) is investigated. The aim is to determine the ideal locations of the objects to be added to enhance an initial deployment while satisfying antagonist objectives and constraints. In this regard, a first proposed contribution aim to introduce an hybrid model that includes many-objective optimization algorithms relying on decomposition (MOEA/D, MOEA/DD) and reference points (Two_Arch2, NSGA-III) while using two strategies for introducing the preferences (PI-EMO-PC) and the dimensionality reduction (MVU-PCA). This hybridization aims to combine the algorithms advantages for resolving the many-objective issues. The second contribution concerns prototyping and deploying real connected objects which allows assessing the performance of the proposed hybrid scheme on a real world environment. The obtained experimental and numerical results show the efficiency of the suggested hybridization scheme against the original algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.