Abstract

In general, the Internet of Things (IoT) relies on centralized servers due to limited computing power and storage capacity. These server-based architectures have vulnerabilities such as DDoS attacks, single-point errors, and data forgery, and cannot guarantee stability and reliability. Blockchain technology can guarantee reliability and stability with a P2P network-based consensus algorithm and distributed ledger technology. However, it requires the high storage capacity of the existing blockchain and the computational power of the consensus algorithm. Therefore, blockchain nodes for IoT data management are maintained through an external cloud, an edge node. As a result, the vulnerability of the existing centralized structure cannot be guaranteed, and reliability cannot be guaranteed in the process of storing IoT data on the blockchain. In this paper, we propose a multi-level blockchain structure and consensus algorithm to solve the vulnerability. A multi-level blockchain operates on IoT devices, and there is an IoT chain layer that stores sensor data to ensure reliability. In addition, there is a hyperledger fabric-based monitoring chain layer that operates the access control for the metadata and data of the IoT chain to lighten the weight. We propose an export consensus method between the two blockchains, the Schnorr signature method, and a random-based lightweight consensus algorithm within the IoT-Chain. Experiments to measure the blockchain size, propagation time, consensus delay time, and transactions per second (TPS) were conducted using IoT. The blockchain did not exceed a certain size, and the delay time was reduced by 96% to 99% on average compared to the existing consensus algorithm. In the throughput tests, the maximum was 1701 TPS and the minimum was 1024 TPS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call