Abstract
The existing traffic administration policy is not worthy enough to tackle the density of movement in Bangladesh. This study proposes an advanced Internet of Things (IoT) based road traffic administration system to resolve the problem. All the smart lamp posts of road crossings handle four factors, i.e., number of cars, activation time, waiting time, and emergency signal of each lane. This research uses an automatic video processing method to count the number of cars on the road. In order to process the video mask, R-CNN is used, which is a combination of the faster R-CNN that performs object detection (class + bounding box), and Fully Convolutional Network (FCN) results into a pixel border. Modern statistical methods are also used, such as multiple regression analysis, cluster analysis, and factor analysis. For handling emergency traffic situations, a new activation function was proposed and named the RT activation function. Factor analysis with principal component analysis (PCA) allowed in reducing the number of variables from elevens to five. The linear regression explains 90.2% of the variance in the data. This research considers R, R-square, adjusted R-square with 0.950, 0.902, and 0.409, values respectively. The results analysis ensures that the performance of the proposed schema is good enough to apply in the road of Bangladesh.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering (IJRTE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.