Abstract

We present linear-I/O algorithms for fundamental graph problems on embedded outerplanar graphs. We show that breadth-first search, depth-first search, single-source shortest paths, triangulation, and computing an � separator of size O(1/� )t akeO(scan(N)) I/Os on embedded outerplanar graphs. We also show that it takes O(sort(N)) I/Os to test whether a given graph is outerplanar and to compute an outerplanar embedding of an outerplanar graph, thereby providing O(sort(N))-I/O algorithms for the above problems if no embedding of the graph is given. As all these problems have linear-time algorithms in internal memory, a simple simulation technique can be used to improve the I/O-complexity of our algorithms from O(sort(N)) to O(perm(N)). We prove matching lower bounds for embedding, breadth-first search, depth-first search, and singlesource shortest paths if no embedding is given. Our algorithms for the above problems use a simple linear-I/O time-forward processing algorithm for rooted trees whose vertices are stored in preorder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.