Abstract

Rapid advancements in human-machine interaction and voice biometrics impose desirability on soft mechanical sensors for sensing complex dynamic signals. However, existing soft mechanical sensors mainly concern quasi-static signals such as pressure and pulsation for health monitoring, limiting their applications in emerging wearable electronics. Here, we propose a hydrogel-based soft mechanical sensor that enables recording a wide range of dynamic signals relevant to humans by combining a preloading design strategy and iontronic sensing mechanism. The proposed sensor offers a two-orders-of-magnitude larger working bandwidth (up to 1000 Hz) than most of the reported soft mechanical sensors and meanwhile provides a high sensitivity (-23 dB) that surpasses the common commercial microphone. The amplitude-frequency characteristic of the proposed sensor can be precisely tuned to meet the desired requirement by adjusting the preloads and the parameters of the microstructured hydrogel. The sensor is capable of recording instrumental sounds with high fidelity from simple pure tones to melodic songs. Demonstration of a skin-mountable sensor used for human-voice-based remote control of a toy car shows great potential for applications in the voice user interface of human-machine interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.