Abstract

Silk fibroin (SF) films containing a peptide, neurotensin (NT), stimulated by iontophoresis were developed aiming to modulate the inflammatory process and prevent the growth of microorganisms typical of wounds. NT-loaded SF films composition shows predominance of β-sheet structures that conferred adequate mechanical properties, transparency, moderate roughness and low swelling index to fibroin films. Infrared spectroscopy and thermal analysis suggested the presence of non-covalent interactions between NT and fibroin. Using the MALDI imaging technique, it was possible to visualize the homogeneous NT distribution throughout the film surface, in addition to its prolonged release for up to 72 h. In vitro studies in E. coli liposaccharide-stimulated macrophages showed a significant reduction of interleukins production after NT-loaded film application, whereas NT solution did not reduce them. Bi-laminated NT-loaded fibroin films containing silver electrodes provided a burst release of NT when anodic iontophoresis was applied, enabling a rapid onset of drug action. In addition, anodic iontophoresis presented a bacteriostatic effect against gram-positive microorganisms. Different iontophoresis densities, from 0.2 to 0.6 mA/cm2, did not significantly reduce fibroblast viability after 30 min of application. In conclusion, iontophoretic-stimulated peptide-loaded fibroin films could be a promising platform for the treatment of wounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.