Abstract

This paper explores the possibility of iontophoretically enhancing the in vitro transdermal flux of two polypeptides: leuprolide (a LHRH analogue; MW = 1209.4) and a cholecystokinin-8 analogue [CCK-8; MW = 1150.17). Control experiments at an applied voltage of 0.5V across full-thickness human skin did not yield measurable fluxes of either polypeptide, suggesting that despite the expected iontophoretic flux enhancements, the intrinsic permeability of these polypeptides through skin may be too low to allow significant amounts of the drug to permeate. Therefore, pretreatment with ethanol (to simulate the effect of a chemical permeation enhancer) followed by iontophoresis was investigated with the aim of evaluating the potential of the enhancer plus iontophoresis as a means for controlled transdermal delivery of these polypeptides. The ethanol pretreatment dramatically increased the passive fluxes of both polypeptides, and iontophoresis produced further enhancements in their fluxes. Also, the experimental enhancement factors for leuprolide as a function of the applied voltage appeared to be generally lower than the predictions of the constant field theory. A synergism of iontophoresis with a chemical permeation enhancer may be a potential route for controlled transdermal delivery of these and other high molecular weight polypeptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call