Abstract

In present studies, a hyponychium pathway (from ventral side of the nail plate) was investigated as a potential route of drug delivery into the nail apparatus using iontophoresis as an active physical method. In vitro transport studies were performed across the human nail plate using sodium fluorescein as a marker substrate for 24 h. After transport studies, the amount of sodium fluorescein extracted from an active diffusion area of the nail plate in case of iontophoresis was found to be ∼54-folds more to that of passive. The amount of sodium fluorescein retained in the peripheral area of the nail plate after application of iontophoresis was found to be ∼30-folds more relative to passive. Ex vivo transport studies were performed on excised human cadaver toe using terbinafine hydrochloride as a model drug for three days (8 h/day). The amount of terbinafine retained in the nail plate after application of iontophoresis (3.43 ± 1.34 µg/mg) was ∼20-folds more when compared with passive (0.17 ± 0.10 µg/mg). The amount of drug extracted from the nail bed and nail matrix was 1.73 ± 0.12 µg/mg and 0.55 ± 0.22 µg/mg, respectively. On the other hand, there was no detectable amount of terbinafine found in the nail bed and nail matrix in case of control (passive delivery). These studies show that the iontophoretic drug delivery through hyponychium region to other parts of the nail apparatus could be a potential way of onychomycosis treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.