Abstract

The main objective of the present study was to investigate the plausibility of iontophoretic delivery of drugs to the nail matrix via proximal nail fold. The in vitro drug transport studies were performed in Franz diffusion cells across folded epidermis, which is used as a model for the proximal nail fold. The amount of drug transported into the receiver compartment following iontophoresis for 3 h at 0.5 mA/cm(2) was 150-fold higher than the control (0.008 ± 0.002 μg/cm(2)). The amount of drug present in the skin after iontophoresis (0.45 ± 0.12 μg/mg) was approximately fivefold higher as compared with that of the control (0.08 ± 0.01 μg/mg). Iontophoresis of terbinafine across the proximal nail fold was assessed using excised cadaver toe model as well. A custom-designed foam-pad-type patch system was used for iontophoresis in cadaver toes. The amount of the drug delivered into the nail matrix following iontophoresis for 3 h was significantly higher than the minimum inhibition concentration of terbinafine. However, on the contrary, passive delivery for about 24 h did not result in any detectable drug levels in the nail matrix. Iontophoresis across the proximal nail fold could be developed as a potential method to target drugs to nail matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.