Abstract

<p>We investigate properties of solar-wind like plasma turbulence using direct numerical simulations. We analyze the transition from large (magnetohydrodynamic) scales to ion ones using two-dimensional hybrid (fluid electrons, kinetic ions) simulations of decaying turbulence. To quantify turbulence properties we apply spectral transfer and Karman-Howarth-Monin equations for extended compressible Hall MHD to the simulated results. The simulation results indicate that the transition from MHD to ion scales (the so called ion break) results from a combination of an onset of Hall physics and of an effective dissipation owing to the pressure-strain energy-exchange channel and resistivity. We discuss the simulation results in the context of the solar wind.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.