Abstract

Soft robotics systems are currently under development using ionic electroactive polymers (i-EAP) as soft actuators for the human-machine interface. However, this endeavor has been impeded by the dilemma of reconciling the competing demands of force and strain in i-EAP actuators. Here, the authors present a novel design called "ions-silica percolated ionic dielectric elastomer (i-SPIDER)", which exhibits ionic liquid-confined silica microstructures that effectively resolve the chronic issue of conventional i-EAP actuators. The i-SPIDER actuator demonstrates remarkable electromechanical conversion capacity at low voltage, thanks to improved ion accumulation facilitated by interpreting electrode polarization at the electrolyte-electrode interface. This approach concurrently enhances both strain (by approximately 1.52%) and force (by roughly 1.06 mN) even at low Young's modulus (merely 5.9MPa). Additionally, by demonstrating arachnid-inspired soft robots endowed with user-desired tasks through control of various form factors, the development of soft robots using the i-SPIDER that can concomitantly enhance strain and force holds promise as a compelling avenue for ushering in the next generation of miniaturized, low-powered soft robotics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.