Abstract
A neutron diffraction experiment with isotopic H/D substitution on four concentrated NaOH/H(2)O solutions is presented. The full set of partial structure factors is extracted, by combining the diffraction data with a Monte Carlo simulation. These allow to investigate both the changes of the water structure in the presence of ions and their solvation shells. It is found that the interaction with the solute affects the tetrahedral network of hydrogen bonded water molecules in a manner similar to the application of high pressure to pure water. The solvation shell of the OH(-) ions has an almost concentration independent structure, although with concentration dependent coordination numbers. The hydrogen site coordinates a water molecule through a weak bond, while the oxygen site forms strong hydrogen bonds with a number of molecules that is on the average very close to four at the higher water concentrations and decreases to about three at the lowest one. The competition between hydrogen bond interaction and Coulomb forces in determining the orientation of water molecules within the cation solvation shell is visible in the behavior of the g(NaHw)(r) function
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.