Abstract

We investigate electric-field effects in dilute electrolytes with nonlinear polarization. As a first example of such systems, we add a dipolar component with a relatively large dipole moment [Formula: see text] to an aqueous electrolyte. As a second example, the solvent itself exhibits nonlinear polarization near charged objects. For such systems, we present a Ginzburg-Landau free energy and introduce field-dependent chemical potentials, entropy density, and stress tensor, which satisfy general thermodynamic relations. In the first example, the dipoles accumulate in high-field regions, as predicted by Abrashikin et al.[Phys.Rev.Lett. 99, 077801 (2007)]. Finally, we consider the case, where Bjerrum ion pairs form a dipolar component with nonlinear polarization. The Bjerrum dipoles accumulate in high-field regions, while field-induced dissociation was predicted by Onsager [J. Chem. Phys.2, 599 (1934)]. We present an expression for the field-dependent association constant K(E), which depends on the field strength nonmonotonically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call