Abstract

The purpose of the present study was to determine the influence of pH and ion-pairing on the permeation of ibuprofen across polydimethylsiloxane (PDMS) membrane. The solubility of ibuprofen sodium was determined at a range of pH values. Saturated solutions were then used to determine the influence of pH on diffusion across PDMS as a model membrane. The apparent partition coefficient of ibuprofen sodium between n-octanol and phosphate buffer at various pH values was also investigated. Organic salts of ibuprofen using ethylamine, diethylamine, triethylamine and ethylene diamine as counter-ions were synthesized and the influence of these counter-ions on the permeation of ibuprofen was studied. The presence of ion-pairing was confirmed using 1H NMR and 13C NMR. Diffusion studies at different pH values (4.0, 5.0, 6.0, 7.0 and 8.0) indicated that ibuprofen sodium flux increased significantly with increasing pH from 4.0 to 7.0. Above pH 7.0 a decrease in diffusion was observed. The permeability coefficient increased with an increase in the amount of unionized acid. The apparent partition coefficient was directly related to the steady-state flux. The steady-state flux of ibuprofen increased up to 16-fold using different counter-ions. The highest flux was measured from ibuprofen triethylamine. The flux of ibuprofen salts across a lipophilic membrane can be increased by formation of ion-pairs. The extent of enhancement is associated with the lipophilicity, extent of ion-pairing and reduction in charge over the drug molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call