Abstract

AbstractWe use ground‐based (GNSS, SuperDARN, and ionosondes) and space‐borne (Swarm, CSES, and DMSP) instruments to study ionospheric disturbances due to the 25–26 August 2018 geomagnetic storm. The strongest large‐scale storm‐time enhancements were detected over the Asian and Pacific regions during the main and early recovery phases of the storm. In the American sector, there occurred the most complex effects caused by the action of multiple drivers. At the beginning of the storm, a large positive disturbance occurred over North America at low and high latitudes, driven by the storm‐time reinforcement of the equatorial ionization anomaly (at low latitudes) and by particle precipitation (at high latitudes). During local nighttime hours, we observed numerous medium‐scale positive and negative ionospheric disturbances at middle and high latitudes that were attributed to a storm‐enhanced density (SED)‐plume, mid‐latitude ionospheric trough, and particle precipitation in the auroral zone. In South America, total electron content (TEC) maps clearly showed the presence of the equatorial plasma bubbles, that, however, were not seen in data of Rate‐of‐TEC‐change index (ROTI). Global ROTI maps revealed intensive small‐scale irregularities at high latitudes in both hemispheres within the auroral region. In general, the ROTI disturbance “imaged” quite well the auroral oval boundaries. The most intensive ionospheric fluctuations were observed at low and mid‐latitudes over the Pacific Ocean. The storm also affected the positioning accuracy by GPS receivers: during the main phase of the storm, the precise point positioning error exceeded 0.5 m, which is more than five times greater as compared to quiet days.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.