Abstract
A theoretical model of the sky-wave path propagation with frequency modulated continuous wave (FMCW) source for high frequency (HF) radar is proposed in this paper. Based on the modeling of pulsed source, the expression of the received electric field with an FMCW source is derived for the reflection case from the ionospheric irregularities. Subsequently, the ionospheric reflection coefficient with different phase power spectrums for vertical and oblique backscattering propagation paths is incorporated into the ionospheric clutter model. Simulation results show that the peak power of FMCW in average is lower than that of pulsed waveform. Furthermore, different incident angles and magnetic field in mid-latitude can also influence the power density of the backscattering ionospheric clutter. Finally, the data analysis results from the high frequency surface wave radar (HFSWR) and Ionosonde collected in Yellow Sea preliminarily verify the inversion of the variance of the electron density fluctuation and the vertical drift velocity of the irregularities within ionosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.