Abstract

Ionospheric propagation effects on Global Navigation Satellite Systems (GNSS) signals are the most pronounced during radio occultation due to long ionospheric travel paths of the received signal on low Earth orbiting satellites. Inhomogeneous plasma distribution and anisotropy cause higher‐order nonlinear refraction effects on GNSS signals which cannot be fully removed through a linear combination of dual‐frequency observables. In this paper, higher‐order ionospheric effects due to straight line of sight (LOS) propagation assumption such as the excess path length of the signal in addition to the LOS path and the total electron content difference between the curved path and the LOS path have been investigated for selected GPS‐CHAMP occultation events. Based on simulation studies we have derived correction formulas for computing raypath bending effects as functions of signal frequency, tangential height of the raypath, ionospheric parameters such as the maximum ionization and total electron content. If these parameters are known, the proposed correction method is able to correct on an average about 65–80% bending errors of GNSS occultation signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.