Abstract

IONORING (IONOspheric RING) is a tool capable to provide the real-time monitoring and modeling of the ionospheric Total Electron Content (TEC) over Italy, in the latitudinal and longitudinal ranges of 35°N–48°N and 5°E–20°E, respectively. IONORING exploits the Global Navigation Satellite System (GNSS) data acquired by the RING (Rete Integrata Nazionale GNSS) network, managed by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The system provides TEC real-time maps with a very fine spatial resolution (0.1° latitude x 0.1° longitude), with a refresh time of 10 min and a typical latency below the minute. The TEC estimated at the ionospheric piercing points from about 40 RING stations, equally distributed over the Italian territory, are interpolated using locally (weighted) regression scatter plot smoothing (LOWESS). The validation is performed by comparing the IONORING TEC maps (in real-time) with independent products: (i) the Global Ionospheric Maps (GIM) - final product- provided by the International GNSS Service (IGS), and (ii) the European TEC maps from the Royal Observatory of Belgium. The validation results are satisfactory in terms of Root Mean Square Error (RMSE) between 2 and 3 TECu for both comparisons. The potential of IONORING in depicting the TEC daily and seasonal variations is analyzed over 3 years, from May 2017 to April 2020, as well as its capability to account for the effect of the disturbed geospace on the ionosphere at mid-latitudes. The IONORING response to the X9.3 flare event of September 2017 highlights a sudden TEC increase over Italy of about 20%, with a small, expected dependence on the latitude, i.e., on the distance from the subsolar point. Subsequent large regional TEC various were observed in response to related follow-on geomagnetic storms. This storm is also used as a case event to demonstrate the potential of IONORING in improving the accuracy of the GNSS Single Point Positioning. By processing data in kinematic mode and by using the Klobuchar as the model to provide the ionospheric correction, the resulting Horizontal Positioning Error is 4.3 m, lowering to, 3.84 m when GIM maps are used. If IONORING maps are used as the reference ionosphere, the error is as low as 2.5 m. Real-times application and services in which IONORING is currently integrated are also described in the conclusive remarks.

Highlights

  • The ability to monitor and model the environmental conditions in near-Earth space is of paramount importance for modern technological infrastructures vulnerable to a variety of electromagnetic phenomena of differing spatial and temporal scales, usually originating on the Sun and disrupting the near-Earth space environment via magnetosphere-ionosphere coupling [1]

  • The products are: (i) the vTEC derived from the Montereale receiver by applying the Gg calibration

  • Technique and described in Section 2; (ii) the vTEC maps over Europe provided by ROB and available at ftp://gnss.oma.be [23]

Read more

Summary

Introduction

The ability to monitor and model the environmental conditions in near-Earth space is of paramount importance for modern technological infrastructures vulnerable to a variety of electromagnetic phenomena of differing spatial and temporal scales, usually originating on the Sun and disrupting the near-Earth space environment via magnetosphere-ionosphere coupling [1]. These phenomena are included in the so-called “Space Weather”. Large-scale traveling ionospheric disturbances (LSTIDs) have been observed using different instruments [10]

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call