Abstract

beta-Ionone is a constituent of vegetables and fruits, and can induce apoptosis in some types of malignant cells. However, the mechanism of apoptosis in osteosarcoma (U2os) cells is currently unclear. In this study, we determined whether beta-ionone can induce apoptosis in U2os cells in vitro and which signal pathway(s) is involved. We found that beta-ionone inhibited cell proliferation in U2os cells in a concentration- and time-dependent manner and caused cell cycle arrest at the G1-S phase. TUNEL assay, DNA ladder and assessment of Caspase 3 activity showed that apoptosis was the determinant in the effects of beta-ionone. Furthermore, Expression of the p53 protein increased in a concentration-dependent and time-dependent manner according to immunocytochemistry and immunoblotting after beta-ionone treatment. In addition, beta-ionone upregulated Bax protein and downregulated Bcl2 protein which led to Bax translocation and cytochrome c release, subsequently activated Caspase 3, thus resulting in apoptosis. In summary, these data suggested that beta-ionone induced apoptosis in a concentration-dependent manner in U2os cells via a p53-dependent mitochondrial pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.