Abstract

Ubiquitous calpains (mu- and m-calpain) have been repeatedly implicated in apoptosis, but the underlying mechanism(s) remain(s) to be elucidated. We examined ionomycin-induced cell death in LCLC 103H cells, derived from a human large cell lung carcinoma. We detected hallmarks of apoptosis such as membrane blebbing, nuclear condensation, DNA ladder formation, caspase activation, and poly-(ADP-ribose)polymerase cleavage. Apoptosis was prevented by preincubation of the cells with the calpain inhibitor acetyl-calpastatin 27-peptide and the caspase inhibitor Z-DEVD-fmk, implicating both the calpains and caspases in the apoptotic process. The apoptotic events correlated in a calpastatin-inhibitable manner with Bid and Bcl-2 decrease and with activation of caspases-9, -3, and -7. In vitro both ubiquitous calpains cleaved recombinant Bcl-2, Bid, and Bcl-x(L) at single sites truncating their N-terminal regions. Binding studies revealed diminished interactions of calpain-truncated Bcl-2 and Bid with immobilized intact Bcl-2 family proteins. Moreover, calpain-cleaved Bcl-2 and Bid induced cytochrome c release from isolated mitochondria. We conclude that ionomycin-induced calpain activation promotes decrease of Bcl-2 proteins thereby triggering the intrinsic apoptotic pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.