Abstract

Nutrient stress harms plant growth and yield. Melatonin is a biologically active, multifunctional hormone that relieves abiotic stress in plants. Although previous studies have shown that melatonin plays an important role in improving nutrient-use efficiency, the mechanism of its regulation of nutrient stress remains unclear. In this study, melatonin was applied to apple plants under nutrient stress, and morphological indices, physiological and biochemical indices, and stomatal morphology were evaluated. The response of apple plants to nutrient deficiency and the melatonin mechanism to alleviate nutrient stress were analyzed by combining ionome, transcriptome, and metabolome. The results showed that exogenous melatonin significantly alleviated the inhibitory effect of nutritional stress on the growth of apple plants by regulating stomatal morphology, improving antioxidant enzyme activity, promoting ion absorption, and utilizing and changing the absorption and distribution of minerals throughout the plant. The transcriptome results showed that melatonin alleviated nutrient stress and promoted nutrient absorption and utilization by regulating glutathione metabolism and upregulating some metal ion transport genes. The metabolome results indicated that levels of oxalic acid, L-ascorbic acid, anthocyanins (cyanidin-3-O-galactoside), lignans (lirioresinol A and syringaresinol), and melatonin significantly increased after exogenous melatonin was applied to plants under nutrient stress. These differentially expressed genes and the increase in beneficial metabolites may explain how melatonin alleviates nutrient stress in plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.