Abstract

The ionoluminescence (IL) spectra of a ZnO single crystal irradiated with 2.5 MeV H+ ions reveal that its intensity decreases with increasing the ion fluence, which indicates that the concentration of luminescence centers decreases with irradiation. The Gaussian decomposition results of the ZnO IL spectrum with a fluence of 1.77×1011 ions/cm2 show that the spectrum is a superposition of energy levels centered at 1.75 eV, 2.10 eV, 3.12 eV and 3.20 eV. The four peaks are associated with electronic transitions from CB to VZn, CB to Oi, Zni to VB and the decay of self-trapped excitons, respectively. The results of single-exponential fitting demonstrate that different luminescent centers have different radiation resistance, which may explain why the emission decreases more slowly in the NBE band than in the DBE band. The agglomeration of larger point clusters accounts for the decrease in the concentration of luminescence centers and the increase in the concentration of non-luminescence centers, which indicates that the defect clusters induced by ion implantation act as nonradiative recombination centers and suppress light emission. The results of the photoluminescence spectra of a virgin ZnO single crystal and a ZnO single crystal irradiated with a fluence of 3.4×1014 ions/cm2 show that compared with the virgin ZnO, the emission intensity of irradiated ZnO decreases by nearly two orders of magnitude, which demonstrates that the irradiation effect reduces radiative recombination and enhances nonradiative recombination. The conclusions of photoluminescence are consistent with the IL results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.