Abstract

Hydrogel-based triboelectric nanogenerators (H-TENGs) have shown great promise in wearable electronics as soft, stretchable and sustainable power sources. However, H-TENGs can only be used in a narrow temperature range for a short duration due to freezing and evaporation of water. Here, an ionogel-based triboelectric nanogenerator (I-TENG) is designed to significantly broaden the application temperature range and duration while retaining all the superior properties of H-TENGs. The ionogel network constructed by dipole-dipole and ion-dipole interactions exhibits high stretchability (~800%) and ionic conductivity (1.1 mS cm−1). The corresponding I-TENG retains high stretchability (>400%), transparency (>90%), and anti-fatigue resistance (resisting 1000 cycles of 100% stretching) with stable electrical performance for 1 month. The I-TENG shows an instantaneous peak power density of 1.3 W m−2 and efficiently harvests biomechanical energy to drive an electronic watch. Additionally, the I-TENG serves as a self-powered human motion sensor to inspect the bending angle of an elbow. More importantly, the I-TENG retains high stretchability and electrical performance over a wide temperature range from −20 to 100 °C. This work provides a new strategy to design and tailor TENGs that will be very useful for diverse applications, including wearable electronics, electronic skin, and artificial intelligence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.