Abstract

Ionic thermoelectric supercapacitors (ITESCs) produce orders of magnitude higher voltages than those of conventional thermoelectrics (TEs) based on the thermo-diffusion of electrons/holes and are therefore attractive for converting low-grade heat into electricity. The stretchability and stability of the whole ITESC are important for wearable heat harvesting applications. Recent studies on ITESC have focused on stretchable ionic TE electrolytes with a giant Seebeck coefficient, but there are no reports of fully stretchable ITESCs for wearable heat harvesting devices due to the lack of stretchable electrodes and stretchable ionic TE electrolytes with stability. Herein, we present a fully stretchable ITESC composed of stable high-performance ionic thermoelectric elastomer (ITE) electrolyte and stretchable gold nanowire (AuNW) electrodes. The ITE shows excellent air stability (> 60 d) in comparison to hydrogel-based electrolytes that are susceptible to dehydration in ambient conditions. Furthermore, the ITE exhibits an apparent thermopower up to 38.9 mV K–1 and ionic conductivity of 3.76 × 10–1 mS cm–1, which both are maintained up to a tensile strain of 250%. Finally, a fully stretchable ITESC with AuNW electrodes is developed which can harvest energy from thermal gradients during deformations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call