Abstract

We extend the computations of ionizing shocks in argon to the unsteady and multi-dimensional, using a collisional-radiative model and a single-fluid, two-temperature formulation of the conservation equations. It is shown that the fluctuations of the shock structure observed in shock-tube experiments can be reproduced by the numerical simulations and explained on the basis of the coupling of the nonlinear kinetics of the collisional-radiative model with wave propagation within the induction zone. The mechanism is analogous to instabilities of detonation waves and also produces a cellular structure commonly observed in gaseous detonations. We suggest that detailed simulations of such unsteady phenomena can yield further information for the validation of nonequilibrium kinetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call