Abstract

Currently, our knowledge of how different cell types in a tissue microenvironment respond to low and high linear energy transfer (LET) radiation is highly restricted. In this study, a comparative analysis was performed on γ-ray-induced DNA damage and repair in primary human melanocytes and keratinocytes isolated from 3 donors. Our study demonstrates a modest interindividual variability in both melanocytes and keratinocytes in terms of both spontaneous and ionizing radiation (IR)-induced 53BP1 foci formation and persistence. Melanocytes, in general, showed a slightly elevated (1.66–2.79 folds more) 53BP1 foci induction relative to keratinocytes after exposure to different doses of γ-rays (0.1–2.5 Gy) radiation. To verify the influence of ATM kinase on IR-induced 53BP1 foci formation, melanocytes and keratinocytes were treated with a specific ATM kinase inhibitor (KU55993, 10 μM) for 1 h prior to radiation. ATM kinase inhibition resulted in the reduction of both spontaneous and IR-induced 53BP1 foci by 17–42% in both melanocytes and keratinocytes of all the 3 donors. Increased persistence of IR-induced 53BP1 foci number was observed in ATM-inhibited melanocytes and keratinocytes after different post exposure times (6 h and 24 h). Taken together, our study suggests that interindividual variations exist in the induction and repair of DNA double-strand breaks (DSBs) in melanocytes and keratinocytes and that ATM is crucial for an optimal DSB repair efficiency in both human skin cell types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call