Abstract
Ionizing radiation exposure results in the activation of several tyrosine kinase receptors that participate in radiation-induced DNA damage response and radioresistance. We previously showed that insulin-like growth factor 1 receptor (IGF-1R) inhibition enhanced radiosensitivity of non-small-cell lung cancer (NSCLC) cells. In this paper, we demonstrate that in U1810 NSCLC cells gamma-radiation activates IGF-1R within 10 min, with a maximal activation effect 2 h post-irradiation. Impairment of IGF-1R tyrosine kinase activity enhances human lung cancer cells radiosensitivity by a mechanism that involves phosphatidylinositol 3-kinase (PI3-K) and p38 kinase. In an active form, IGF-1R binds and activates p38 kinase, promoting receptor signaling. Conversely, inhibition of IGF-1R phosphorylation results in IGF-1R/p38 complex disruption and p38 kinase inactivation. We have also demonstrated that in insulin-like growth factor-1-stimulated cells, Ku-DNA-binding activation is induced by ionizing radiation within 4 h, reaches a maximum level at 12 h and remains active up to 72 h. Blockade of IGF-1R activity or its downstream signaling through p38 kinase induces a decrease in radiation-mediated Ku-DNA-binding activation and downregulates the level of Ku86, without affecting Ku70 expression in the nucleus of U1810 cells. The IGF-1R signaling via PI3-K does not interfere with the p38 signaling, the Ku-DNA-binding activity or the level of Ku86. Our present study demonstrates for the first time that ionizing radiation activates IGF-1R. Inhibition of IGF-1R signaling via p38 kinase induces radiosensitivity by a novel mechanism involving nuclear Ku86.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.